Interaction of ultrashort laser pulses with hemoglobin as a tool for selective erythrocytes photo-labeling

M. Radmilović¹, I. Drvenica², M. Rabasović¹, V. Ilić², D. Pavlović¹, S. Nikolić¹, M. Matić³ and A. Krmpot¹

Ti: Sa

¹Institute of Physics Belgrade, Serbia ²Institute for Medical Research, University of Belgrade, Serbia ³Institute of Oncology and Radiology of Serbia

hv'

DM

Sam.

Introduction

VNDF

 Detection of fluorescence emission during the interaction of hemoglobin (Hb) with ultrashort laser pulses was observed [1, 2].

The latest results suggest that the interaction of ultrashort laser pulses with Hb is associated with the formation of Hb photoproduct [3].

Discussion & Conclusion

Label free imaging of erythrocytes is possible due to Two-photon fluorescence and formation of photoproduct.

Fluorescence intensity increase during exposure to the ultrashort laser pulses.

Two-photon emission spectra of photoproduct

Uv/VIS absorption spectra of hemoglobin (red) and formed photoproduct (blue) 0.7

Funding: Project: HEMMAGINERO

References

[1] G. Clay et al., *The Journal of chemical physics* 126.2 (2007), 01B609

[2] D. Li et al., *Optics letters*, **36**(6)(2011), 834-836.

[3] E. A. Shirshin et al., *Laser Physics Letters*, **15**(7)(2018), 075604